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Abstract—The Internet has grown into an enormous network
offering a variety of services, which are spread over a multitude
of domains. BGP-routing and Autonomous Systems (AS) are the
key components for maintaining high connectivity in the Internet.
Unfortunately, Internet Service Providers (ISPs) operating ASs do
not only host normal users and content, but also malicious content
used by attackers for spreading malware, hosting phishing web-
sites or performing any kind of fraudulent activity. Practical anal-
ysis shows that such malware-providing ASs prevent themselves
from being de-peered by hiding behind other ASs, which do not
host the malware themselves but simply provide transit service
for malware.

This paper presents a new method for detecting ASs that pro-
vide transit service for malware hosters, without being malicious
themselves. A formal definition of the problem and the metrics
are determined by using the AS graph. The PageRank algorithm
is applied to improve the scalability and the completeness of the
approach. The method is assessed on real and publicly available
datasets, showing promising results.

I. INTRODUCTION

In general, data is transmitted through multiple Au-
tonomous Systems (ASs), which can be operated by distinct
legal entities. Referring to [1], an AS is defined as the unit
of routing policy or a collection of links and routes for an
operator. AS routing is based on the Border Gateway Protocol
(BGP) [2]. This protocol acts at the level of address prefixes as
a path vector protocol with aim to guarantee high end-to-end
connectivity in the Internet.

Since data travels through more than one AS on its path
from sender to receiver, this is also effective for the trans-
mission of malware!. While tracking ASs hosting malware is
feasible, it is used in this paper in combination with PageRank
to show that ASs looking innocent can forward malware
from source to an end-point as a transit service. This is the
main objective of our work as such ASs guarantee a high
connectivity for malware spreading without being necessary
present in common blacklists since they are not malware
provider themselves.

In this paper, our approach named ASMATRA (1) formally
defines a method to assess the capacity of an AS to provide
transit to malware hosting ASs, (2) shows how it can be
approximated by a new metric over the AS path, (3) analyses
the link structure of the entire AS graph in a scalable way and
(4) validates the approach on real scenarios.

'In this paper, malware is used as a generic term for any kind of malicious
activities including worm spreading, spamming, phishing, etc.

The paper is organized as follows: ASMATRA is described
from a macroscopic point of view in section II, section III
introduces background information. Section IV describes the
approach for a single AS and the global approach using
PageRank is given in V. Section VI discusses the experimental
results. Section VII presents related work and section VIII
presents the conclusions and planned future work.

II. OVERVIEW

Figure 1 highlights information flow and processing in
ASMATRA. The initial step is to collect BGP announces
which are exchanged between routers of distinct ASs. As
highlighted, BGP-ranking is leveraged [3]. This tool relies on
blacklists of IP addresses and subnetworks in order to score
each AS regarding the proportion of hosted malware. Hence, it
is useful to detect ASs hosting malware but not those providing
transit service. To do that, ASMATRA uses the output of
BGP-ranking but will also create a graph representing the
interconnections between ASs (2). Then, a graph analysis using
Page is performed where BGP-ranking helps in weighting
properly the algorithm. Using also other standard metrics about
the graph and nodes, each AS can be individually scored to
represent its capacity to provide transit for malware.

Therefore, ASMATRA needs few requirements: BGP an-
nounces and blacklists for running BGP-ranking (or access to
the web interface).

III.

A. The Border Gateway Protocol (BGP) and Autonomous
Systems (AS)

AS is the unit of a routing policy or a collection of IP
links/routes for one or more administrative operators [1]. It
can be distinguished between three AS types. The first type is
stub where an AS is only connected to one AS. The next type
is multihomed, where an AS has connections to many ASs for
improving its own connectivity, but does not forward traffic
between connected ASs (transit). The last type is the transit
AS, where an AS provides transit between ASs connected to it.
Each AS has an ASN (Autonomous System Number), a unique
number to identify its network, but for more about ASs, the
reader may refer to [1] and [4].

BACKGROUND

The BGP was introduced to control the route selection and
the transmission of data between ASs. A BGP-router maintains
a table with the path (AS path) to reach a given IP-prefix. Since
2001, CIDR (Classless Inter-Domain Routing) is leveraged for
route aggregation.
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Fig. 1: Information flow and processing of ASMATRA

The information from the IP-table is sufficient to generate
AS graphs for representing the connectivity and reachability of
ASs. Based on this, routing loops may be pruned or decision
policies be enhanced. Details about BGP are given in [2].

B. Malicious Autonomous Systems

Some ASs are more tolerant regarding their customers’
activities than others. Besides this, each AS may be susceptible
to host malware, since customer activities are not permanently
controlled. Incident report tools may help in the response to
malicious activities, since complaints or discovered malware
can be reported there and further action be taken, for example
by using filtering. In [5] for example, the authors show that
there are numerous ASs, which exhibit an abnormal proportion
of malware hosting and collateral effects, i.e. launching attacks,
etc. For McColo [6] or Atrivo [7], for example, 78% of the
servers and domains have been estimated being hostile. In
[8], it is claimed that there are others, which are exclusively
operated for criminal activities, like for instance ValueDot.
In general, once such a behaviour is detected, the AS is
disconnected/de-peered from the Internet by a court decision
and in most cases all by cooperation among legitimate up-
stream ASs, which provide connectivity to the rest of the
Internet. Even if this works, it acts with delay and usually
does not prevent from a resurrection of this AS elsewhere
on the Internet, especially in countries where legislations and
politics are more permissive. BGP-ranking [3], described in the
next section, can help anticipating this reappearance process
by combining knowledge from multiple blacklists.

Cyber-criminals go beyond this and operate transit ASs as
well. Hence, the upstream transit AS, which was previously
able to disconnect a malicious AS once detected, is now
controlled by the criminals. Such transit ASs are harder to
detect because IP addresses of malware are not listed in
this AS. Looking at the well known example of the Russian
Business Network (RBN) in Fig.2, it was operated until 2007
and is composed of several ASs involved in malicious activities
such as the main RBN or Credolink AS, but connectivity in
the Internet is obtained by transiting through SBTtel. Since
this one-hop transit does not really obfuscate and is easily
discoverable, cyber-criminals integrate more levels of transit

Internet
Upstream ISPs \
on malicious on malicious
AS AS

RBN —Transit AS 41173
~__ SBTtelecom

AS 40989
RBN -7

Fig. 2: Overview of the Russian Business Network (RBN)

q

AS, which allows RBN to escape a de-peering for 3 years. An
explicit study of RBN is given in [8].

ASMATRA focuses on detecting AS providing transit to
malware hoster but does not provide any counter-measures.
However, automatic de-peering is a possibility but it’s quite
extreme and a more cautious mode, in particular through
manual investigation, is adviced. In this way, ASMATRA can
be seen as a tool to guide manual investigation in order to
reduce the neccasry time to perfrom it which, as shown before,
can take several years.

C. BGP-ranking

This section describes BGP-ranking [3] software? that aims
to score ISPs based on malware they host. BGP-ranking has
been operated for more than 2 years, collecting malicious
activities per ISP.

The scoring, AS,qnk, is a float value starting from 1 to
an unbounded value. 1 is the default score for an active
ASN (announcing at least 1 network block). The scoring is
computed from a set of lists, BL, holding publicly known

2available at https:/github.com/CIRCL/BGP-Ranking
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Fig. 3: Trivial example of an AS topology

malicious source IP addresses®. A list, b € BL, is collected
by the BGP-Ranking system for a day. Since the quality of
the lists is variable, the BGP-Ranking operator adds an impact
factor to each list, bimpact-

Then, for each occurrence of a malicious IP address within
ASz, an occurrence counter is incremented leading to deter-
mine occ(b, ASz), the number of occurrences of IP addresses
included in a prefix announced by ASx and listed in b. For
all lists, the sum of all occurrences is computed by using the
impact factor bimpact- ASNs announce network sizes, therefore
the sum is divided by the overall network size, ASxzg;.e,
expressed in the number of IP addresses. This weights the
overall scoring for each ASN and gives a comparable result
that can be defined as:

> e occ(b, AST)bimpact
Asxsize

ASyank(ASz) =1+ @)

The scoring system is operated by CIRCL* and a sample
output of BGP-ranking looks like:

whois -h pdns.circl.lu 6661

# ASN,Rank,Matched black list,Highest Ranking, Position

6661,1.00001786394817,1/13,3.078125,4379/52883

IV. PROBLEM DESCRIPTION AND METRICS
A. Detecting malware transit service

The objective is to detect ISPs providing transit service to
malware hosters (e.g. SBTtel in Fig. 2). A simple example
of our approach is given in Fig. 3. The naming of the AS is
described below:

e malicious AS: hosts malware or from a general per-
spective related to malicious activities,

e normal AS: benign AS, not exhibiting an excessive
proportion of malicious activities compared to other
ones,

e malware transit AS: provides transit for malicious
ASs.

Malicious and normal AS are supposed known (assuming
a BGP ranking threshold for instance) in the examples to
keep the problem focused on malware transit AS detection.
However, this clear distinction (malicious/normal) does not

3see www.blocklist.de, www.dshield.org... Full configuration at: https:/

github.com/CIRCL/bgp-ranking/blob/master/etc/bgp-ranking.conf.redis
“http://bgpranking.circl.lu/
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Fig. 4: De-peering known malicious ASs

hold in practice and we use the BGP Ranking scores as a mean
for weighting our approach as mentioned in next sections.

Based on BGP-ranking, detecting malicious ASs is viable,
see Fig. 4(a), where such an AS can be isolated thanks to
coordination of normal upstream ASs. However, a malware
transit AS is not necessarily highly scored by BGP-ranking
but provides Internet connectivity to malicious ASs. Thus, the
latter can continue its activity without being filtered like in
Fig. 4(b). Our method is conceived to detect such ASs.

B. AS graph

The ASs have to exchange data with selected neighbouring
ASs. This information is essential for determining AS paths,
i.e. successive ASs to go through for reaching an IP address
block. The definitions carry and transit are taken from [9].

For the inter-domain routing process, if ASy can
reach a given prefix N1 through ASw, then ASx
carries N1 for ASy. This is denoted as N1 € ASz <
ASy

An ASz transits a given prefix N1 for another ASvy,
if and only if

- ASzx, ASy, and ASz are 3 different ASs,

- ASy carries N1 for ASx

- ASz carries N1 or N1’s less specific for ASz.

This transit can be denoted as: N1 € ASz < ASy

Therefore, an AS-path between ASx and ASy for a
network prefix N is a sequence of ASs that will forward
traffic towards N from ASz to ASy. Thus, these ASs transit
the prefix N for ASy. For our purpose, We refine the defi-

nition of transit AS as follows: ASx transits ASy to ASz,

ASy Afe ASz, if and only if there is a network prefix N,

such that N € ASy = ASx and ASx carries N or N'’s less
specific for ASz.

Referring to the description of [9], an AS graph is defined
as:

An AS graph is a directed graph, denoted as G(V, E),
where V' is a set of nodes representing the ASs and
E the set of directed edges, denoting the connections
between two end-node ASs. By definition, this graph
may contain loops, but not multiple edges.

The AS graph does not hold multiple edges since the con-
tribution in routing is aggregated. It shows the reachability
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among ASs. There is an edge between two ASs, if they
are sequentially represented in at least one AS path. Such
a representation summarizes BGP-routing by factorizing AS
paths. Fig 3 illustrates these concepts with unnumbered ASs.

C. Theoretical measures for malware transit ASs

By definition, a malware transit AS provides transit service
to other ASs, known to host malware. Assuming, M T (ASz)
measures the capacity of ASz to support malware transit, it
can be computed by summing the BGP-ranking value of the
ASs for which transit is provided:

MT(ASz)= )
(ASy,AS=z)

e{(a,b)|a™3"b}

ASTank: (Asy) (2)

MT(ASx) does not measure the impact of a malicious
AS on other ones through ASz in terms of volume of new
malware spread. From a theoretical point of view, this needs
exact knowledge about hosted malware (type, version,...),
which is practically impossible. However BGP ranking may be
considered as a good reference for computing the difference
between ASs and equation (2) is refined:

(ASmnk (AS?/) — ASrank (ASZ))Jr

MT(ASz) = S

(ASy.Asz) card({ASu €V, ASy =" ASz})

€{((L,b)|aAE>'Fb}

3)

where card(S) is the cardinality of S. The malware impact
of ASy on ASz evaluated as the BGP Ranking difference
(numerator) is distributed among all ASs, which provide an
equivalent transit (denominator). By approximation, an AS can
transfer malware to another only if its BGP-ranking is higher.
Therefore, we use the positive part * (z7 = max(z,0)).

D. Theoretical measure estimation

Since the previous measure relies on exact AS paths, it
raises scalability issues due to the large number of paths to
consider. Moreover, while some routes are stable [10], most of
them are still unstable [11]. For example, it has been shown
that most the average life of a route is around one day. The
analysis needs to collect AS paths over long time periods
(weeks) to correctly identify ASs providing transit for others.
This leads to an increase in complexity, while the AS graph
is a summarized view with some advantages:

e the number of links is very low,

e it highlights possible routes between ASs which are
not visible in AS paths (yet or anymore). For example
in Fig. 5, the ASxz routing table (plain arrows) has a
path to ASz through ASy and has a direct path to
ASu. However, ASu is also peered with ASz and
can also be an AS-path from ASz to ASz, when the
other route is congested or if the policy changes. This
is also true for malicious ASs, which regularly have
paths filtered and so change their AS-paths frequently.

Based on this reasoning, the AS-graph is now considered
as undirected, which is achieved by removing directions of
the AS graph as described before. For the sake of clarity, a

— 3 paths of ASx

- - >paths of ASu

68
g

Fig. 5: Example for an alternative route in a trivial AS graph

path denotes now a standard path (sequence of nodes) in the
AS graph and not an AS-path anymore. The malware transit
capacity of an AS, ASz, is computed by the BGP-ranking
differences between all pairs of ASs, (ASy, ASz), such that
there is a path between ASy and ASz through ASx.

However, there are numerous paths connecting two ASs in
Internet. Considering all of them is not realistic for scalability
and also from a conceptual point of view (e.g., the probability
is very low that routing from ASx to ASy contains hundreds
intermediate nodes while there are shorter connections). The
exploration of the graph can be limited by a predefined radius
around the considered ASs.

Assuming G'(ASz, k), a graph composed of nodes at a
maximum distance k from ASz. The latter is considered as
a transit AS between ASy and ASz if and only if it is in
the unique path from ASy to ASz. The notion of unique
path avoids that too long paths are artificially considered.
We propose to find graph partitions (connected components)
of G'(ASx, k) by discarding ASz. Thus, G"(ASz, k) is the
graph generated from G’(ASx, k) where ASx and subsequent
edges are removed. The malware transit capacity of ASx
is now evaluated thanks to its capacity to transfer malware
between groups of ASs in C, = CC(G"(ASx,k)), the
set of subgraphs representing the connected components of
G"(ASz,k):

Z Z Rank, — Z Ranky,

(c1,e2)€pairs(Cy) la€cl bec2
MT}(ASz) =
k(AS2) #neighs(ASt)

“

where pairs(S) is the set of all possible unordered pairs
of elements from S (2-subsets). Assuming a pair {a,b}, the
absolute value has to be used to estimate the ability of a to
affect b or vice-versa. To avoid a bias for highly peered AS like
like major operators, the value is normalized by the number of
peering connections represented by the number of neighbours,
#neighs(ASz).

A first metric to asses the capacity of an AS to transit
malware (equation (3)) was introduced, based on the natural
definition of a malware transit AS. Since its computation
raises several issues, an estimated metric was derived that
limits the evaluation of an AS only to its neighbourhood. A
new parameter, k, needs to be defined. Next section presents
a solution avoiding this additional parameter and employing
PageRank. PageRank limits the computational overhead as it
allows to compute the malware transit capacity for all ASs
within a single execution, while equation (4) calculates it for
an individual AS.
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(a) Without weighted malicious AS

(b) With weighted malicious AS

Fig. 6: PageRank on AS topology (Only score values men-
tioned in text are represented for sake of clarity)

V. AS RANKING USING PAGERANK

The PageRank algorithm [12], [13] is used by the Google
web search engine. In PageRank, a score is estimated for each
webpage and is based on the Weblink organization. A web
page is referred to by other pages, if other pages contain a
hyperlink pointing to it. Intuitively, a frequently-referred page
is important and pages referred to by a few important pages,
are considered important too. For instance, if a web page is
linked by only one web site, but this web site being Yahoo,
then this page should be considered as important too.

In this paper, PageRank is applied to an AS graph to
detect malware transit ASs because such ASs are well con-
nected to malicious ones. This can have a higher impact
during PageRank computation using weighting based on BGP-
ranking. PageRank is computed iteratively until scores are
stable. At each iterating step, the current score of a node is
distributed through its outgoing links. The new score for a
node is given by the sum of the incoming edges scores.

Fig. 6(a) and 4(b) show an example using the same node
legend than Fig. 3. Assume no prior knowledge, then each node
(equivalent to an AS) starts with a score of one. Then, the node
1 distributes its initial score of one through its two outgoing
links. Node 3 receives 0.5 as well as 1 from node 9 leading
to a global score of 1.5 after one iteration. Node 5 receives
a total of 1.83. The iteration process continues, but within a
single step, it is already observable that node S provides better
connectivity to others, but the malware transit AS (node 3 and
8)cannot be detected.

Adding knowledge, such as the BGP-ranking score, is re-
quired to propagate bigger values from malicious ASs to transit
ASs. In Fig. 6(b), scores close to nodes represent the BGP-
ranking for the ASs. Since node 1 and 9 represent the malicious
ASs, they receive higher scores, i.e. 1.6 and 1.8, which are
transmitted to node 3. The latter thus obtains 0.8 + 1.8 = 2.6.
However, a normal AS that plays a central role in the topology
can have a higher score as this an objective of PageRank. For
instance, node 4 in Fig. 6(b) got 0.8+0.5+1.1+0.33 = 2.73. In
fact, it also provides transit service to a malicious AS (node 1),
but should be less considered as a malware transit AS because
it is also the upstream AS of many normal ones. By de-
peering the malicious AS similar to Fig.4(b), the scores drop
to 1.93, quite lower than the score of node 3. De-peering is not
instantaneous because a malicious AS has first to be detected

(IP addresses related to malicious activities for example) before
triggering legal and/or technical countermeasures.

In this paper, we consider this case by supposing that an
AS providing transit service to normal ASs mainly, cannot
be considered as a malware transit AS. The score is thus
normalized regarding the number of neighbours. In this trivial
example, a simple division by the number of neighbours is
enough. Node 4 having three incoming connections will then
obtain a score 2.73/4 = 0.6825, while the malware transit
node 3 will get 2.6/2 = 1.3.

From a formal point of view, PageRank can be described
as follows [14]:

Let Py(1) be the score of a node i € V for an iteration
t, (j,i) € E which describes a directed edge from
a node j to a node i. O; is denoted as the number
of outgoing links in a node j. I; is denoted as the
number of incoming links in a node j. W (i) is the
initial weight of the node 1 € V

As mentioned before, the weight W (k) of an AS is given by its
BGP-ranking score. While the damping factor d in the original
PageRank represents a user clicking randomly on a webpage,
it allows here to balance the impact on the score between the
previously computed score and the weight of a node, i.e. the
BGP-ranking of the AS. The computation efficiency [13] is
optimized as follows,

. . Pi1(7)

P ==Y Wk +d ), —5= 6

k=1 (G.4)eE

In our case, the graph is undirected, i.e. (i,j) € E < (j,1) €
E. Besides, the iterations stops when |P; — P,_q| < 10712,

More details about PageRank can be read in [12].

As discussed before, PageRank is slightly modified for
discarding normal ASs providing minor transit service to ma-
licious AS based on the number of neighbours. To normalize
the PageRank score, it can be assumed that most ASs are not
providing transit for malware. Hence, from the score of an
ASz, the average score of all ASs having the same number
of neighbours is subtracted.

D iV ttneighs(j)=sneighs(i) 1+ (J)

P/(i) = P,(i) — card({j € V, #neighs(j) = #neighs(i)%é))

Furthermore, as this method considers potential future
AS paths or BGP announcements, distinction between AS
announcing an IP block or not in BGP-Ranking computation
is not necessary anymore. Thus, the BGP-Ranking is slightly
modified by not adding 1 in equation (1)°.

Finally, each AS is associated to new score value which
can be used to establish another ranking which differs from
BGP Ranking and which aims to figure out ASs tolerant to
provide transit to malware hoster. Thus, once such a ranking
is determined, ASs in the first ranks having an abnormal high
score regarding the other ASs are suspects. This process is
considered in the following experiments.

Sthis version is used in the rest of the paper
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VI. EXPERIMENTAL RESULTS
A. Methodology

Some ASs are known to be tolerant with malware [15], [3],
but that there is no simple mean to truly identify a malware
transit AS, except after huge anti-cybercrime investigations [8].
The more, datasets are not publicly available.

It was never researched in the past and so there is no
available public datasets. That is why the paper introduces a
metric qualified as an estimation. However, our first definition
in equation (3) is built from the natural definition, i.e. an
AS is considered to transit malware based on its capacity to
forward traffic between malware hoster and benign AS (the
differentiation between ASs is done using BGP-ranking). Even
if this metric cannot be directly computed, one experiment is
dedicated to show that the estimated value based on the same
natural definition (equation (4)) is quite stable, after the main
parameter k (number of hops) reaches a certain value. The
estimation given in equation (4) is a local metric as it has
to be calculated individually for each AS, while PageRank is
computed globally for the entire AS graph. The evaluation in
following section checks that PageRank’s output is compliant
with the estimated metric for selected ASs as the latter cannot
be computed for all ASs due to scalability issues. This issue
is also discussed in last section about complexity.

In the experiment, ASs have been renumbered to mask their
real identities. All used datasets are publicly available and our
tool is available at http://lorre.uni.lu/~jerome/files/asmatra.zip
for readers interested in experimenting themselves.

B. Dataset

Our dataset was built from the Routing Information Service
(RIS) of RIPES. It consists of raw BGP-data (packets) collected
from the rrc00.ripe.net collector in from 2012 April 17 to 30
in order to avoid any bias due to a particular route change at
a certain day. 7243k AS paths have been observed during this
period, but only 1028k are unique and correspond to 41k dis-
tinct ASs for which BGP-Ranking has been computed from the
different blacklists (see section III-C). The theoretical measure
presented in equation (3) would have to iterate over all 1028k
paths and examine each intermediate AS on the paths. This
would give a total number of 4150k iterations, the equivalent
to the total number of intermediate links in the AS paths. Using
the AS graph, the 41k ASs are interconnected only with about
95k edges only, which shows a higher scalability (with a factor
of 44 regarding the number of connections to consider) while
using the estimation approach in section IV-D.

The BGP-ranking (version where one is subtracted) varies
between zero (no malware hosted) and 0.17565 with a mean
of 0.00005. Hence, most ASs are not logically providing
malware. Fig. 7 highlights BGP-ranking values where ASs
have been indexed in logarithmic scale on the x-axis from high
to low BGP-ranking values. Less than 4000 ASs have been
identified as hosting malware, i.e. having a strictly positive
BGP-ranking value. Thus, the increasing malicious activity in
the Internet comes from a minority of ASs, which needs to
obtain a good connectivity for being efficient. This strengthens
the motivation of our approach to discover ASs providing

Ohttp://www.ripe.net/data-tools/stats/ris/ris-raw-data
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Fig. 7: BGP-ranking (ASs ordered from high to low BGP-
ranking values)

such a connectivity. The BGP-ranking file is downloadable at
http://lorre.uni.lu/~jerome/files/bgpranking.txt.

C. PageRank Tuning

Explained in section IV, the advantage of using PageRank
compared to the estimation in equation (4) is to avoid the
evaluation of an AS by exploring a limited subgraph of
neighbours reachable in k hops. PageRank also considers the
entire graph by successive iterations and basically propagates
BGP-ranking scores along edges. But the damping factor, d,
needs to be defined. It balances the score computation between
the connectivity (graph edges) and the BGP-ranking of nodes.

Except for the extrema values of d (0 and 1), tests have
been performed from 0.1 to 0.9 by steps of 0.05. To measure
the impact of d, the dispersion of the PageRank scoring for
each AS is evaluated by using the variation coefficient that is
the ratio between the standard deviation and the mean. As a
relative metric, it is preferred to the standard deviation. The
average value over all ASs is around 41% which is quite high.

In Fig. 8, the graph shows the scores in reverse order for
different values of d. It clearly highlights that only a few of
them (top 30) are really distinguishable.

D. Validation

Due to the variability of results regarding d, an AS is
considered to provide transit for malware, if it is always ranked
in the top 30, independently of the value of d when executing
PageRank. This gives a set 1" of 23 ASs. Fig. 9(a) shows the
estimated value for the capacity to transit malware based on
equation (4). Each line represents an AS and the first value is
the BGP-ranking value. To get a comparative view, Fig. 9(b)
represents the ASs always in the top 100, but out of top 30,
independently on the damping factor d. This gives a set B of
30 ASs which mainly reach a value of zero within few hops.

Compared to Fig. 7, there is no correlation between hosting
and providing transit, as some ASs out of the top 30 even have
a higher BGP-ranking.
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Fig. 8: Pagerank values for top ranked ASs for a range of
damping factors d

In Fig. 9, the curves show the same shape with higher
values for the first hops with a peak in 1. In fact, by increasing
the neighbourhood radius (hop count) in equation (4), it tends
to merge connected components and, by this, reduce the
potential number of malware transit possibilities. Thus, the
malware transit ASs are connected to malware hosters within
a few hops. This means that attackers do not need to be
necessarily hidden behind multiple ASs for being efficient.

Moreover, Fig. 9 clearly shows that the PageRank approach
obeys the properties of the estimated transit value (equation
(4)) as the top 30 ASs have higher values (always > 0.0002)
than ASs out of the top 30 (< 0.00015 except for one AS).

To illustrate our validation from a practical perspective, a
concrete example is given in Fig. 10 . It shows the neigh-
bourhood for some ASs, T14 and T27, which are thought to
provide transit to malware. Both were chosen out of 1" because
they can easily be represented here while other ASs in 7" have
more nodes.

The lighter a node, the higher is its BGP-ranking. This
remains also valid for its size. T14 and T27 are not large
ASs. They are peered with several ASs and in particular they
are close to AS 24 and 15, which are connected together and
provide malware, as indicated by their size. Moreover, the AS 1
is directly connected to T14, while it is highly ranked by BGP-
ranking. Thus, T14 and T27 play a major role for transiting
malware. Because this is a manual investigation, we cannot
applied exhaustively to all ASs.

E. Complexity

The computation of the estimated value for every node,
based on the neighbourhood in equation (4), requires to extract
the subgraph constructed with nodes at a maximal distance &k
of each node. Extracting a subgraph for k hops is done by
traversing the edges of the node to be analysed. Doing this
operation for all nodes is achieved in O(n), where n is the
number of edges. Once achieved, the second step is the calcula-
tion of the connected components. This can be done in parallel
with the computation of the aggregated BGP-ranking for each
component. The task of determining a connected component is

(a) Malware transit AS (1")

0 2 4 6 8 10
(b) Normal AS (B)
Fig. 9: Theoretical estimation value for ASs tagged or untagged

as malware transit by the PageRank based approach (each line
represents a unique AS)

Fig. 10: Sample of an AS topology with malware transit ASs
(node size and brightness are proportional to BGP-Ranking)

common in graph analysis and is achieved in linear time O(n),
where n is the number of edges. Thus, the overall complexity
is O(#nodes x #edges(neighborhood(k))) where #nodes
is the total number of AS and #edges(neighborhood(k)) is
the average number of edges in the subgraph including nodes
at a maximal distance k for any node.
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Fig. 12: Average number of nodes in a subgraph of neighbours

In PageRank, an iteration performs in linear time regard-
ing the number of edges (score propagation on each edge).
Whereas the total number of nodes and egdes are constant
in an AS graph and in the same order of magnitude in our
experiments, as shown in section VI-B, the complexity differs
according to the number of iterations (PageRank) or edges in
the neighbourhood of a node (theoretical measure estimation).
Fig. 11 shows the number of PageRank iterations depending of
the damping factor d, while Fig. 12 shows the average number
of edges in a subgraph of nodes for previously selected nodes
for validation. This shows the advantage of the PageRank
based approach from complexity view even for small values
for k, since the average number of nodes for £ = 2 is 2839.
This is why the estimation cannot be calculated for all ASs and
only some of them have been selected from the results of the
PageRank approach. In addition, a single PageRank iterations
requires around 1.143 seconds in previous tests. Computing
the estimated metric with & approaching the graph diameter
was even not complete after more than 4 hours computation
for only one AS. To conclude, combining both approaches is
feasible by selecting some ASs (e.g. top 30 ASs) for a further
check with the estimated metric.

VII. RELATED WORK

Over the last years, a lot of approaches have been presented
for the ranking of ASs based on various metrics, which resulted
in a variety of ranking criteria. However, we are the first
to make a global analysis, not limited to the first hop, for
automatically revealing malware transit AS such as those
involved in complex rogue network compositions.

Some relevant works done in AS ranking are the methods
presented in [16], [17], which analyse the importance of the
different ASs in Internet based on standard metrics like the

number of customers or their connectivity. An interesting work
is presented in [9], where a new model for the ranking of ASs
is presented by using inter-domain access volume, called IDAV.
In this model, the contribution of an AS to the Internet routing
is analysed by extending it with access volume, as for example
carry and transit volume.

In [18], a new approach based on traceroute measurements
for rating ASs is presented where quality of service metric are
leveraged. A similar work is presented in [19]. The authors
present a new model for constructing a network map that
includes more data than only information about connectivity.
For example, the authors extend their map by using latency
and routing information. In a work from [20], the authors
analyse the evolution of the Internet connectivity over ten
years by analysing ASs and BGP data. In [21], the authors
applied a method based on the power-law distribution for
AS degrees to analyse the topology of the Internet hierarchy.
A more customer oriented work is presented in [22], where
the authors define customer-provider relations by applying a
novel ranking algorithm, combining collaborative filtering and
webpage ranking. In [15], the authors analyse the dynamics in
the Internet by studying the properties of ASs by classifying
time-scales of events. Considering security perspectives, the
authors in [15] analysed the impact of some observable short-
lived events.

Identifying abnormal ASs as source of malicious activities
is mainly done using blacklist connectivity [3], [23], [5], [24]
and some differ from additional features like BGP-behaviour
[5] or botnet communications [24]. In [25], the authors show
that the major volume of spam comes from few ASs only.
Revealing complex structure of ASs involved in cyber-criminal
organization require deep manual inspection, as shown in [8].
In [5], the authors study the neighbours at the first hop to
figure out some ASs more prone to peer with malicious ASs.
A complementary work to ours is [26] which evaluates the
proximity of malware hosters in Internet.

VIII. CONCLUSION

This paper presents a new method, called ASMATRA, that
evaluates ASs on their capacity to provide transit for malware
hosted in other ASs. ASMATRA leverages PageRank and
BGP-ranking. We provide theoretical and practical measures
for ASs deriving from the natural and intuitive definition of
a malware transit AS. The results show that the PageRank-
based method is coherent with theses measures. It is more
scalable, while applied globally to the entire network, since
the other measures need to be applied individually to each AS.
To conclude, we are able to track ASs used for malware transit
without the AS being necessarily a malicious entity itself and
which could not be detected by traditional investigation. In
future work, it is planned to test other link analysis algorithms
and investigate the evolution of malware transit capacity of
ASs over time as well as using other BGP datasets.
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